Accession Number : AD0619352

Title :   VECTOR FIELDS AND INFINTESIMAL TRANSFORMATIONS ON ALMOST-HERMITIAN MANIFOLDS WITH BOUNDARY.

Descriptive Note : Revised ed.,

Corporate Author : LEHIGH UNIV BETHLEHEM PA

Personal Author(s) : Hilt,Arthur L. ; Hsiung,Chuan-Chih

Report Date : 01 OCT 1963

Pagination or Media Count : 29

Abstract : An investigation is made of vector fields and infinitesimal transformations on almost-Hermitian manifolds with boundary. Riemannian manifolds are considered, as well as Lie derivatives over the manifolds, local boundary geodesic co-ordinates, and integral formulas. A Killing vector field on a compact orientable Riemannian manifold is discussed, and almost-Hermitian, almost-semiKahlerian, and almost-Kahlerian structures are defined. Contravariant analytic vector fields are given consideration on an almost-Hermitian manifold M(n) with boundary B(n-1), together with their relations to Killing, projective Killing, and conformal Killing vector fields. Covariant analytic vector fields on an almost-Hermitian manifold with boundary are studied as well as vector fields on an almost-Kahlerian manifold with boundary. (Author)

Descriptors :   (*MATRICES(MATHEMATICS), CONFORMAL MAPPING), (*ALGEBRAIC TOPOLOGY, MATRICES(MATHEMATICS)), VECTOR ANALYSIS, TRANSFORMATIONS(MATHEMATICS), INTEGRALS, OPERATORS(MATHEMATICS), GEODESICS

Distribution Statement : APPROVED FOR PUBLIC RELEASE