
Accession Number : AD0630290
Title : AN 'OPTIMAL' SOLUTION OF SAINTVENANT'S FLEXURE PROBLEM FOR A CIRCULAR CYLINDER.
Descriptive Note : Technical rept.,
Corporate Author : CALIFORNIA INST OF TECH PASADENA DIV OF ENGINEERING AND APPLIED SCIENCE
Personal Author(s) : Bogy,David B.
Report Date : FEB 1966
Pagination or Media Count : 41
Abstract : In a recent paper Sternberg and Knowles established certain minimum strainenergy properties of Saint Venant's solutions to the relaxed SaintVenant problem for an elastic cylinder. They proved that SaintVenant's solutions for the case of extension, pure bending, and torsion are uniquely distinguished, among all solutions to the appropriate relaxed problem that correspond to a fixed resultant load and to pointwise vanishing shearing or normal terminal tractions, by the fact that they minimize the total strain energy. In the same paper SaintVenant's solution for the case of bending by transverse terminal loads was shown to be no longer optimal in the foregoing sense and the optimal flexure solution was characterized implicitly as the solution to a mixedmixed boundaryvalue problem for the cylinder in question. In the present investigation this optimal flexure solution is determined explicitly for a circular cylinder by means of the PapkovichNeuber stress functions. The results obtained, which are in infiniteseries form, are evaluated numerically and compared with the analogous results of SaintVenant. The solution deduced here also supplies a quantitative illustration of SaintVenant's principle. (Author)
Descriptors : (*OPTIMIZATION, STRAIN(MECHANICS)), (*ELASTIC PROPERTIES, CYLINDRICAL BODIES), FLEXURAL STRENGTH, STRESSES, SERIES(MATHEMATICS), NUMERICAL ANALYSIS
Subject Categories : Mechanics
Distribution Statement : APPROVED FOR PUBLIC RELEASE