Accession Number : AD0639614

Title :   PROTON-DEUTERON ELASTIC SCATTERING AT HIGH MOMENTUM TRANSFERS.

Corporate Author : MICHIGAN UNIV ANN ARBOR DEPT OF PHYSICS

Personal Author(s) : Coleman,Ernest

Report Date : JUL 1966

Pagination or Media Count : 95

Abstract : An experimental and theoretical investigation of proton-deuteron elastic scattering at high momentum transfers is presented. The differential cross sections for backward elastic scattering at incident proton kinetic energies of 1.0, 1.3, and 1.5 GeV were measured for four-momentum transfer squared (-t) from 2.6 to 5.0 (GeV/c)sq, which corresponds to cosine of center-of-mass proton scattering angles from -0.5 to -0.9. A backward peak is observed, and the slope and magnitude of the peak were determined. At 2.0 GeV for forward elastic differential cross section was measured for -t from 0.44 to 1.54 (GeV/c)sq. A shoulderlike departure from the forward diffraction peak was observed. The one-nucleon exchange peripheral model was successful in interpreting the backward peak. Calculations based on modern three-body quantum mechanical formalisms for the three-nucleon system supporting a two-body bound state also suggest the one-nucleon exchange process as the dominant mechanism. The measured forward differential cross section has been explained by the importance of double-scattering of the incident proton at higher momentum transfers. A negative value for the ratio of the real part to the imaginary part of the neutron-proton elastic scattering amplitude at 2.0 GeV is shown to yield maximum agreement with the experimental data. (Author)

Descriptors :   (*PROTON SCATTERING, NUCLEAR CROSS SECTIONS), (*DEUTERON REACTIONS, ELASTIC SCATTERING), (*ELASTIC SCATTERING, NUCLEAR CROSS SECTIONS), MOMENTUM, BACKSCATTERING, KINETIC ENERGY, NUCLEONS, DIFFRACTION, PARTICLE BEAMS, MATRICES(MATHEMATICS), WAVE FUNCTIONS

Subject Categories : Nuclear Physics & Elementary Particle Physics

Distribution Statement : APPROVED FOR PUBLIC RELEASE