
Accession Number : AD0643163
Title : NUMERICAL TREATMENT OF NONIDEAL MGD BASIC EQUATIONS,
Corporate Author : INNSBRUCK UNIV (AUSTRIA) INST FOR THEORETICAL PHYSICS
Personal Author(s) : Friedel,H.
Report Date : 15 JUN 1966
Pagination or Media Count : 14
Abstract : The mathematical treatment of the MGD basic equations is rendered extremely difficult by dissipation terms, as, e.g., caused by thermal conductivity, internal friction of finite electrical conductivity of the medium. Such terms give rise to a parabolic degeneration of the otherwise hyperbolic equations and, consequently, exclude the application of the method of characteristics which is usually used in the nondissipative case. Summarizing the treatment of a previous report, and generalizing some of its results, a numerical method of solution for the parabolically degenerated onedimensional MGD basic equations is given; it has been developed in analogy to the theory of characteristics. This method is advantageous insofar as it has  particularly for weak dissipation  similar stability properties as the method of characteristics (in the case of vanishing dissipation). Using this numerical method, the unsteady development of the structure of a magnetically driven shock under the influence of finite electrical conductivity is investigated in MGD(B<<1)approximation. The (B<<1)approximation was chosen since it leads to a particularly simple and perspicuous form of the basic equations.
Descriptors : (*NUMERICAL METHODS AND PROCEDURES, *EQUATIONS OF MOTION), (*MAGNETOHYDRODYNAMICS, EQUATIONS OF MOTION), ONE DIMENSIONAL FLOW, VECTOR ANALYSIS, AUSTRIA
Subject Categories : Numerical Mathematics
Plasma Physics and Magnetohydrodynamics
Distribution Statement : APPROVED FOR PUBLIC RELEASE