
Accession Number : AD0644151
Title : CONSTANT PARAMETER STEADYSTATE DIFFUSION. ANALYTIC SOLUTIONS IN TWO AND THREE DIMENSIONS.
Descriptive Note : Technical meno.,
Corporate Author : PACIFIC MISSILE RANGE POINT MUGU CALIF
Personal Author(s) : Thorne,C. J. ; Simmons,E. D.
Report Date : 30 SEP 1966
Pagination or Media Count : 41
Abstract : Analytic solutions are presented for two and threedimensional steadystate diffusion problems with constant coefficients. Assumptions of the mathematical model used are: (1) source concentration is known in the source plane, (2) rate of absorption of material into the surface or deposit of material upon the surface is known and is proportional to concentration, (3) concentration at any point is steady state (i.e., independent of time), (4) wind velocity is constant, and (5) the coefficient of diffusion (K) is constant. A general steadystate twodimensional solution is determined for an arbitrary source concentration function and is given in terms of convolution integrals. The solution is given for sectionally linear discontinuous source concentration functions in terms of dimensionless parameters. A method is developed to extend the twodimensional results of parts 1 and 2 to three dimensions. Solutions are given for threedimensional planar source concentration functions symmetric in the plane perpendicular to the wind. (Author)
Descriptors : (*DIFFUSION, *MATHEMATICAL MODELS), (*AIR POLLUTION, DIFFUSION), TWO DIMENSIONAL FLOW, THREE DIMENSIONAL FLOW, ABSORPTION, GASES
Subject Categories : Atmospheric Physics
Air Pollution and Control
Distribution Statement : APPROVED FOR PUBLIC RELEASE