
Accession Number : AD0650398
Title : ON SOME PROPERTIES OF GENERALIZED SOLUTIONS OF LINEAR EQUATIONS OF ELLIPTIC AND PARABOLIC TYPE.
Descriptive Note : APL library bulletin translation series,
Corporate Author : JOHNS HOPKINS UNIV SILVER SPRING MD APPLIED PHYSICS LAB
Personal Author(s) : Ivanov,A. V.
Report Date : 08 MAR 1967
Pagination or Media Count : 16
Abstract : Considered are weak solutions in W(1,0)sub 2 (Omega x (0,T)) (omega is a space domain) of linear parabolic equation delta u/delta t  Lu = f + div g, where L is the sum of an elliptic secondorder operator in divergence form plus lowerorder terms. The existence and uniqueness theory of Ladyzhenskaya and Ural'tseva for weak solutions of the first mixed problem involves requiring that the lowerorder terms be in certain L sub p classes. It is shown by example that some of these requirements are necessary for uniqueness. Some similar results are also given concerning elliptic problems and concerning the Holder continuity of the solutions. (Author)
Descriptors : (*EQUATIONS, *PARTIAL DIFFERENTIAL EQUATIONS), OPERATORS(MATHEMATICS), BOUNDARY VALUE PROBLEMS, USSR
Subject Categories : Numerical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE