Accession Number : AD0666609

Title :   ON MULTIPLIERS OF DIFFERENCE SETS.

Descriptive Note : Technical summary rept.,

Corporate Author : WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER

Personal Author(s) : Mann,H. B. ; Zaremba,S. K.

Report Date : JAN 1968

Pagination or Media Count : 10

Abstract : Let D be an Abelian difference set v,k, lambda with k-lambda = n = 2n sub 1, n sub 1 odd. For every prime divisor of q of n sub 1 let t be identically equal to q(superscript (f sub q)) (v). If n > lambda, (n sub 1, lambda) = 1 then t is multiplier of D. Necessary conditions are given for the existence of a difference set with v = 9 q squared -2, k = 6 q squared -2, lambda = 4 q squared -2.

Descriptors :   (*COMBINATORIAL ANALYSIS, GROUPS(MATHEMATICS)), SET THEORY, NUMBER THEORY, RINGS(MATHEMATICS), MAPPING(TRANSFORMATIONS), THEOREMS

Subject Categories : Theoretical Mathematics

Distribution Statement : APPROVED FOR PUBLIC RELEASE