Accession Number : AD0677003

Title :   FLUCTUATIONS OF A BEAM WAVE PROPAGATING THROUGH A LOCALLY homogeneous medium.

Descriptive Note : Interim rept.,

Corporate Author : WASHINGTON UNIV SEATTLE DEPT OF ELECTRICAL ENGINEERING

Personal Author(s) : Ishimaru,Akira

Report Date : JUL 1968

Pagination or Media Count : 39

Abstract : General formulations for the fluctuations of a beam wave propagating through a homogeneous or locally homogeneous medium are given in terms of the spectral density of the index of refraction. The amplitude and phase correlation functions and the mean square fluctuations are derived for a homogeneous medium showing the dependence on the radial distance in the transverse plane of the beam. The amplitude and phase structure functions are derived for a locally inhomogeneous medium. The correlation functions and the structure functions do not depend only on the difference coordinate, but they are functions of the radial coordinates in the beam cross section. This particular inhomogeneity, however, is shown to be an analytic continuation of the homogeneous or locally homogeneous case. The mean square amplitude fluctuation for the Kolmogorov's locally homogeneous medium is shown to behave as a plane wave for short distance and then becomes less than that of a spherical wave, and its spectrum is shown to behave as 1/K for large K in contrast with the plane and spherical waves. The spread of the beam radius is shown to be approximately the 8/3 powers of the distance L for small distance and its increase depends on the magnitude of the index of refraction fluctuation. (Author)

Descriptors :   (*BEAMS(ELECTROMAGNETIC), PROPAGATION), REFRACTIVE INDEX, SCINTILLATION, TURBULENCE, PERIODIC VARIATIONS, STATISTICAL FUNCTIONS, CORRELATION TECHNIQUES, STOCHASTIC PROCESSES, LIGHT TRANSMISSION, RADIO TRANSMISSION

Subject Categories : Optics
      Radiofrequency Wave Propagation

Distribution Statement : APPROVED FOR PUBLIC RELEASE