
Accession Number : AD0679655
Title : A NEW NECESSARY CONDITION OF OPTIMALITY FOR SINGULAR CONTROL PROBLEMS.
Descriptive Note : Technical rept.,
Corporate Author : HARVARD UNIV CAMBRIDGE MASS DIV OF ENGINEERING AND APPLIED PHYSICS
Personal Author(s) : Jacobson,D. H.
Report Date : NOV 1968
Pagination or Media Count : 34
Abstract : A variation in the form of a rectangular pulse of short duration, is introduced into the singular control function. The technique of Differential Dynamic Programming is used to obtain an expression for the change in cost produced by the control variation, and a new necessary condition of optimality is deduced by requiring that this change in cost be nonnegative. When terminal equality constraints are present, the control variation takes the form of a rectangular pulse followed by a 'special variation' which is chosen to keep the terminal equality constraints satisfied to firstorder. Simple control problems are used to illustrate the nonequivalence of the new necessary condition and the generalized LegendreClebsch condition. (Author)
Descriptors : (*CONTROL SYSTEMS, OPTIMIZATION), DYNAMIC PROGRAMMING, PULSES, INEQUALITIES, TRAJECTORIES
Subject Categories : Theoretical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE