Accession Number : AD0681056

Title :   STATISTICAL DECISION THEORY OF UNDERWATER TARGET CLASSIFICATION - 'SCORE'.

Descriptive Note : Rept. no. 1 (Final),

Corporate Author : QUEENS COLL FLUSHING N Y DEPT OF PHYSICS

Personal Author(s) : Diesendruck,L.

Report Date : MAY 1968

Pagination or Media Count : 64

Abstract : Basic information theory and decision theory is reviewed. It is then applied to the classification situation by assuming a constant rectangular probability density distribution of the rejection hypothesis. This permits the incorrect and correct acceptance probabilities and the incorrect and correct rejection probabilities to be expressed in terms of a 'decision parameter' which depends on the threshold, the probability density level of the rejection hypothesis and on the variance of the acceptance hypothesis. Sets of calculated curves of error probabilities as functions of the available data types are plotted against the decision parameter. The maximum value, average value, and expectation value of the likelihood ratio are obtained and plotted as functions of the decision parameter. The information increase is obtained similarly. These functions are then extended to non-constant rectangular probability density distributions of the rejection hypothesis. The above theory is illustrated by a series of simulated submarine classification examples in which the effect of deteriorating data - missing types of data - is shown. These illustrative examples show that the correct decision is maintained in spite of the deterioration of data.

Descriptors :   (*DECISION THEORY, UNDERWATER TRACKING), (*UNDERWATER TRACKING, TARGET RECOGNITION), (*SUBMARINES, CLASSIFICATION), INFORMATION THEORY, PROBABILITY DENSITY FUNCTIONS, ANALYSIS OF VARIANCE, SONAR SIGNALS, DECISION MAKING, TABLES(DATA)

Subject Categories : Acoustic Detection and Detectors

Distribution Statement : APPROVED FOR PUBLIC RELEASE