
Accession Number : AD0681782
Title : CONSTRUCTION OF SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH QUASIPERIODIC COEFFICIENTS,
Corporate Author : JOHNS HOPKINS UNIV SILVER SPRING MD APPLIED PHYSICS LAB
Personal Author(s) : Mitropolskii,Yu. A. ; Samoilenko,A. M.
Report Date : 03 SEP 1968
Pagination or Media Count : 20
Abstract : The authors consider the problem of constructing a general solution of the system dx/dt = Ax + P(omega t)x, the righthand side of which is smooth and quasiperiodic with respect to t with a frequency basis omega = (omega sub 1,...,omega sub n). When specific conditions are imposed on A, omega and P(omega t) it is proved that the solution of the above system has the form x = phi(omega t)e to the power ((A sub o)t) x sub o, where phi(omega t) is a quasiperiodic matrix with the same frequency basis omega = (omega sub 1,...,omega sub n) and a rapidly converging process for the construction of the matrices phi (omega t) and A sub o is given.
Descriptors : (*DIFFERENTIAL EQUATIONS, PERIODIC VARIATIONS), APPROXIMATION(MATHEMATICS), FOURIER ANALYSIS, MATRICES(MATHEMATICS), CONVERGENCE, SERIES(MATHEMATICS), USSR
Subject Categories : Theoretical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE