
Accession Number : AD0688451
Title : ENERGY TRANSIENTS IN HARMONIC OSCILLATOR SYSTEMS.
Descriptive Note : Technical rept.,
Corporate Author : PRINCETON UNIV N J FRICK CHEMICAL LAB
Personal Author(s) : Tobolsky,Arthur V. ; Hopkins,Irving L. ; Samulski,Edward T.
Report Date : MAY 1969
Pagination or Media Count : 43
Abstract : The approach to energy equilibration is discussed for a system of N isolated classical oscillators, coupled or uncoupled. Exact solutions can be given for the kinetic and potential energies versus time, for a simple boundary condition which distributes the potential energy equally between all the normal modes at zero time and which gives zero kinetic energy to all the normal mode oscillators at zero time. Most solutions are ergodic but a special class is nonergodic, i.e., the potential energy versus time shows exact recursions. The halflife for approaching the equilibrium value of potential or kinetic energy is of the order of the reciprocal maximum frequency of the oscillators. The fluctuations from equilibrium are treated by an extension of the method of Rayleigh's problem of random walks. The results are of interest in connection with the ergodic theorem of statistical mechanics. (Author)
Descriptors : (*STATISTICAL MECHANICS, MEASURE THEORY), HARMONIC GENERATORS, THERMODYNAMICS, RESONANT FREQUENCY, POTENTIAL ENERGY, KINETIC ENERGY, VIBRATION
Subject Categories : Physical Chemistry
Thermodynamics
Distribution Statement : APPROVED FOR PUBLIC RELEASE