
Accession Number : AD0695445
Title : COMPOUND POISSON VECTOR FIELDS: APPLICATIONS IN ASTRONOMY.
Descriptive Note : Technical rept.,
Corporate Author : JOHNS HOPKINS UNIV BALTIMORE MD DEPT OF STATISTICS
Personal Author(s) : Marcus,Allan H.
Report Date : JUN 1969
Pagination or Media Count : 22
Abstract : The characteristic function of the joint distribution of a random vector field at two points in space is derived from a representation of the field as the moving average of a homogeneous Poisson point process in an ndimensional space. This model is used to derive a stable distribution law for the distribution of elevations on a cratered planetary surface; the spectral density function of elevations and the probability density of slopes on a cratered surface are also shown to be approximately inversepower laws. (For further explanation, see AD695 450.) In the second application, the logitudinal and transverse covariance functions of a random stellar force field are derived; they are linear functions of distance at distances less than a 'stellar diameter', and inverse cubic functions of distance at distances greater than a 'stellar diameter'. (For further explanation, see AD695 453.) (Author)
Descriptors : (*EXTRATERRESTRIAL TOPOGRAPHY, VECTOR ANALYSIS), (*VECTOR ANALYSIS, *STOCHASTIC PROCESSES), DISTRIBUTION FUNCTIONS, MOON, CRATERING, STARS, GRAVITY
Subject Categories : Astrophysics
Statistics and Probability
Distribution Statement : APPROVED FOR PUBLIC RELEASE