
Accession Number : AD0709681
Title : A TABLE OF THE COMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND FOR COMPLEX VALUES OF THE MODULUS: III. AUXILIARY TABLES.
Descriptive Note : Final rept.,
Corporate Author : AEROSPACE RESEARCH LABS WRIGHTPATTERSON AFB OHIO
Personal Author(s) : Fettis,Henry E. ; Caslin,James C.
Report Date : MAY 1970
Pagination or Media Count : 170
Abstract : The report contains tables of the following: F(R,theta) = K(R,theta)  1 + (2/pi) K' (R,theta) (ln (4/Rho)  1 + i phi)), F'(R,theta) = K'(R,theta)  (1 + (2/pi) K(R,theta) (ln (4/R) + 1  i theta)) together with K, K' and their second central differences. In the above , K(R) is the complete elliptic integral of the first kind with modulus R = Re sup(i theta) and K'(k' identical with the square root of (1k squared)  rho e sup (i phi)). These functions have the property that they are interpolatable in the regions tabulated, namely R between .7 and 1, theta between 0 and 10 degrees and R between 0 and .35, theta between 0 and 90 degrees. (Author)
Descriptors : (*MEROMORPHIC FUNCTIONS, TABLES(DATA)), SPECIAL FUNCTIONS(MATHEMATICAL), COMPLEX VARIABLES, INTEGRALS
Subject Categories : Numerical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE