
Accession Number : AD0711368
Title : A THEORY OF CONTINUOUSLY VALUED LOGIC.
Descriptive Note : Technical rept.,
Corporate Author : TEXAS UNIV AUSTIN ELECTRONICS RESEARCH CENTER
Personal Author(s) : Preparata,F. P. ; Yeh,R. T.
Report Date : 15 JUN 1970
Pagination or Media Count : 39
Abstract : Motivated by the recognized inadequacy of conventional logic for the representation and manipulation of variables in areas related to artificial intelligence, this paper addresses itself to the investigation of the formal systems obtained by extending wellknown operators to continuous arguments. The studied systems, called 'soft algebras,' are generalizations of boolean algebras in that they satisfy all the axioms of the latter ones except the laws of complementarity, i.e., x + x bar = 1 and x(x bar) = 0. It is shown that every soft algebra is a bounded, distributive and symmetric lattice. A specific soft algebra, namely, the family of all expressions of variables valued over the closed interval (0,1), is analyzed in great detail. This particular algebra is a formal unification of many recent results concerning 'fuzzy' logic. It is shown that every 'soft' function can be canonically represented by a pair of normal expressions, i.e., each soft function is representable by a doublearray of tables (a generalization of the truthtable representation of boolean functions.) Also, a synthesis and a twolevel minimization procedure, which is a generalization of the QuineMcCluskey method, are given. (Author)
Descriptors : (*MATHEMATICAL LOGIC, AUTOMATA), (*ARTIFICIAL INTELLIGENCE, ALGEBRAS), PATTERN RECOGNITION, SPECIAL FUNCTIONS(MATHEMATICAL), DECISION THEORY, THEOREMS
Subject Categories : Theoretical Mathematics
Bionics
Distribution Statement : APPROVED FOR PUBLIC RELEASE