Accession Number : AD0713440

Title :   SOLUTION OF LANDAU'S PROBLEM CONCERNING HIGHER DERIVATIVES ON THE HALFLINE.

Descriptive Note : Technical summary rept.,

Corporate Author : WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER

Personal Author(s) : Schoenberg,I. J. ; Cavaretta,Alfred

Report Date : MAR 1970

Pagination or Media Count : 29

Abstract : Let f(x) be defined for 0 = or < x < infinity and let M sub nu = sup/(f sup nu)(x)/(nu = 0,..., n). Assuming (M sub 0) and (M sub n) to be finite, the best constants (C sub n, nu) in the inequalities (M sub nu) = or < (C sub n, nu) ((M sub 0, sup (1-nu/n))(M sub n, sup (nu/n))), 0 < nu < n are determined. (Author)

Descriptors :   (*FUNCTIONAL ANALYSIS, THEOREMS), APPROXIMATION(MATHEMATICS), NUMERICAL ANALYSIS, INTERPOLATION, INEQUALITIES

Subject Categories : Theoretical Mathematics

Distribution Statement : APPROVED FOR PUBLIC RELEASE