Accession Number : AD0723098

Title :   The Number of Faces in the Integer Hull of Two-Dimensional Asymptotic Programs as a Function of the Determinant.

Descriptive Note : Research rept.,

Corporate Author : CARNEGIE-MELLON UNIV PITTSBURGH PA MANAGEMENT SCIENCES RESEARCH GROUP

Personal Author(s) : Jeroslow,R. G.

Report Date : AUG 1970

Pagination or Media Count : 9

Abstract : It is shown that, for integer programs whose feasible region derives from a set of inequalities in two variables, the number of faces in the integer hull of the corresponding asymptotic integer program (determined by the linear programming optimum) cannot exceed (in order) the logarithm of the absolute value of the determinant of the asymptotic inequalities. Hence, in this case, the number of faces is logarithmic in the size of the associated group. No results on higher dimensions are given. (Author)

Descriptors :   (*LINEAR PROGRAMMING, INEQUALITIES), MATRICES(MATHEMATICS), ASYMPTOTIC SERIES, NUMERICAL ANALYSIS

Subject Categories : Operations Research

Distribution Statement : APPROVED FOR PUBLIC RELEASE