Accession Number : AD0743985

Title :   Analysis of Structural-Acoustic Interactions in Metal-Ceramic Transducers.

Descriptive Note : Technical rept.,

Corporate Author : BROWN UNIV PROVIDENCE R I DIV OF ENGINEERING

Personal Author(s) : Denkmann,W. John ; Nickell,Robert E. ; Stickler,David C.

Report Date : APR 1972

Pagination or Media Count : 32

Abstract : The influence of a (a) coupling between flexural and extensional deformation and (b) coupling between structure and acoustic volume on the dynamic response of piezoelectric ceramic transducer elements mounted on metal diaphragms is analyzed using three analytical methods: (1) classical boundary value techniques; (2) simple direct variational procedures; and (3) finite element methods. The analyses are able to predict the voltage output of the transducer, including resonant amplitudes and shapes, with reasonable accuracy and, also, indicate critical front and back acoustic volume design parameters needed to control resonance. The finite element model includes a general formulation for axisymmetric, layered shells of revolution (which degenerates to a circular plate), whose average normal displacement is coupled to the long-wavelength motion of air in adjacent cavities (acoustic stiffness), ports (acoustic mass), and porous plugs (acoustic damping). The methods outlined here are also applicable to window-enclosure response to sonic boom excitation and to skull-brain impact studies. (Author)

Descriptors :   (*PIEZOELECTRIC TRANSDUCERS, EQUATIONS OF MOTION), BOUNDARY VALUE PROBLEMS, DYNAMICS, INTERACTIONS, METAL PLATES, RESPONSE, CALCULUS OF VARIATIONS

Subject Categories : Electrical and Electronic Equipment

Distribution Statement : APPROVED FOR PUBLIC RELEASE