
Accession Number : AD0748072
Title : Injections of Neighborhood Size Three and Four on the Set of Configurations from the Infinite OneDimensional Tessellation Automata of TwoState Cells.
Descriptive Note : Research and development technical rept.,
Corporate Author : ARMY ELECTRONICS COMMAND FORT MONMOUTH N J
Personal Author(s) : Patt,Y. N.
Report Date : JUN 1972
Pagination or Media Count : 24
Abstract : The tessellation structure is a formal model of a regular array of identical finitestate machines (cells) uniformly interconnected. Array configurations are the infinite patterns formed by the states of the machines in the array. The transformation of one array configuration to another (called a global transformation) is caused by a local transformation acting simultaneously on all cells in the array. The set of cells affecting the next state of a cell (i.e., the arguments of the local transformation) is referred to as the cell's neighborhood. In the onedimensioned infinite array of twostate cells, there are 128 local transformations having neighborhoods consisting of three contiguous cells and 32,768 local transformations having neighborhoods consisting of four continuous cells. By an exhaustive computer program, it has been shown that none of those having neighborhood size three correspond to global transformations that are nontrivial injections on the set of array configurations. It has been conjectured for some time that the same was also true for local transformations of neighborhood size four. The report proves that this conjecture is false. (Author)
Descriptors : (*AUTOMATA, MATHEMATICAL LOGIC), TRANSFORMATIONS(MATHEMATICS), SET THEORY, THEOREMS
Subject Categories : Bionics
Distribution Statement : APPROVED FOR PUBLIC RELEASE