
Accession Number : AD0753137
Title : The Governing Equations and Extremum Principles of Elasticity and Plasticity Generated from a Single Functional.
Descriptive Note : Technical summary rept.,
Corporate Author : WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER
Personal Author(s) : Sewell,M. J.
Report Date : AUG 1972
Pagination or Media Count : 90
Abstract : A new theoretical framework is described which generates, in a characteristic or canonical form, the governing equations and (if appropriate) inequalities of a wide class of problems in applied mathematics from a single generating functional. Variational and dual extremum principles are expressed in terms of that functional. The theory is first illustrated by applying it to the familiar contexts of classical elasticity and the rigid/plastic yieldpoint problem. Precise identification of certain linear operators and inner product spaces is entailed. The unifying effect of the theory is emphasized by working out further applications in finite elasticity and in incremental plasticity from a stressed state with allowance for geometry changes. New results are obtained, and the connection indicated between certain approximate methods of structural mechanics, in particular the finite element method. (Author)
Descriptors : (*ELASTIC PROPERTIES, BOUNDARY VALUE PROBLEMS), (*PLASTIC PROPERTIES, BOUNDARY VALUE PROBLEMS), FUNCTIONAL ANALYSIS, OPERATORS(MATHEMATICS), MATRICES(MATHEMATICS), INEQUALITIES, PARTIAL DIFFERENTIAL EQUATIONS, THEORY
Subject Categories : Mechanics
Distribution Statement : APPROVED FOR PUBLIC RELEASE