
Accession Number : AD0757752
Title : Wannier Functions in a Simple NonPeriodic System.
Descriptive Note : Technical rept.,
Corporate Author : CALIFORNIA UNIV SAN DIEGO LA JOLLA DEPT OF PHYSICS
Personal Author(s) : Kohn,Walter ; Onffroy,Joan R.
Report Date : MAR 1973
Pagination or Media Count : 52
Abstract : The paper defines and analyzes in detail the Wannier functions a(l) of a onedimensional periodic lattice with a point defect. It is shown that these functions have exactly the same exponential localization as the Wannier functions of the perfect lattice and that they approach the latter exponentially as the site l recedes from the defect site. Variational methods for the calculation of the a(l) by the solution of a oneband SlaterKoster type equation, which, however, is exact in the present theory. Moments of the density of states can be obtained directly from the a(l) without calculation of the eigenfunctions; so can the total electron density, n(r), corresponding to a full 'band'. It is suggested that for a nonperiodic system the Wannier functions may be easier to compute directly than the eigenfunctions. (Author)
Descriptors : (*BAND THEORY OF SOLIDS, WAVE FUNCTIONS), DEFECTS(MATERIALS), IMPURITIES, ELECTRON DENSITY, CRYSTAL LATTICES
Subject Categories : Solid State Physics
Distribution Statement : APPROVED FOR PUBLIC RELEASE