Accession Number : AD0757802

Title :   Oscillations, Multiple Steady States and Instabilities in Illuminated Systems.

Descriptive Note : Technical rept.,

Corporate Author : PURDUE UNIV LAFAYETTE IND PROJECT SQUID HEADQUARTERS

Personal Author(s) : Nitzan,Abraham ; Ross,John

Report Date : MAR 1973

Pagination or Media Count : 47

Abstract : The absorption of light by some but not all species of a chemical reaction, followed by a radiationless transition and ultimate conversion of light into heat on a time scale short compared to the chemical reaction time scale, is shown to give rise to the possibilities of multiple steady states, damped oscillations in state variables, hysteresis, and instabilities. All these phenomena are predicted to occur even (AtoB, BtoA), where only A absorbs light, and where the rate equation, with temperature dependent rate coefficients, is coupled non-linearly to the equation for the rate of change of temperature. The theory is developed for both stationary and transient experiments. Both the kinetic and thermodynamic analysis show the essential role of light in effectively breaking microscopic reversibility, analogous to the net flux of reactants and of products across the boundary of an open system. In non-equilibrium relaxation experiments performed on illuminated systems with damped oscillations, both a frequency and a decay rate may be measured. The application of periodic perturbations leads to resonance effects. (Author Modified Abstract)

Descriptors :   (*CHEMICAL EQUILIBRIUM, *PHOTOCHEMICAL REACTIONS), REACTION KINETICS, THERMODYNAMICS, NUMERICAL ANALYSIS

Subject Categories : Physical Chemistry

Distribution Statement : APPROVED FOR PUBLIC RELEASE