
Accession Number : AD0759067
Title : On the OneSkeleton of a Compact Convex Set in Banach Spaces. I.
Descriptive Note : Technical rept.,
Corporate Author : WASHINGTON UNIV SEATTLE DEPT OF MATHEMATICS
Personal Author(s) : Larman,David G.
Report Date : MAR 1973
Pagination or Media Count : 39
Abstract : Using the max. flow  min. cut theorem, Balinski (1961) proved that any two distinct vertices a, b of a ddimensional convex polytope can be joined by d paths in the oneskeleton of the convex polytope so that these paths only overlap pairwise in a and b. Here, the author gives a far reaching generalization of this result to infinite dimensional compact convex sets. It is proved that any two distinct exposed points a, b of an infinite dimensional compact convex set can be joined by n simple arcs in the oneskeleton of the set, for any finite a, so that these paths only overlap pairwise at a and b. (Author)
Descriptors : (*CONVEX SETS, BANACH SPACE), VECTOR SPACES, TOPOLOGY, TRANSFORMATIONS(MATHEMATICS), INEQUALITIES, THEOREMS
Subject Categories : Theoretical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE