Accession Number : AD0803983

Title :   AN INITIAL-VALUE PROBLEM FOR THE MOTION OF A SHIP MOVING WITH CONSTANT MEAN VELOCITY IN AN ARBITRARY SEAWAY.

Descriptive Note : Technical rept.,

Corporate Author : CALIFORNIA UNIV BERKELEY COLL OF ENGINEERING

Personal Author(s) : Lin, Wen-Chin

Report Date : SEP 1966

Pagination or Media Count : 86

Abstract : The motion of a freely floating or submerged body, which is moving with a constant average forward speed and oscillating arbitrarily in any of the six degrees of freedom, is formulated as an initial-value problem. The seaway is assumed to be arbitrary. The body is assumed to be 'smooth', but no symmetry of the body is required. The fundamental assumption is that both the free-surface disturbance due to forward motion of the body and the oscillations are small enough so that the problem may be linearized. By an approach similar to that of Wehausen (1965), it is shown how the present treatment of the problem leads also to Ogilvie's (1965) modified results of Cummins' (1962) decomposition of the velocity potential for the case of an oscillating body with a constant average forward speed. The linearized equations of motion of the body are then derived as a set of six integro-differential equations. Existence and uniqueness theorems are not established either for the boundary-value problem or for the integral equation which is constructed. (Author)

Descriptors :   (*SHIPS, MOTION), (*FLOATING BODIES, MOTION), BOUNDARY VALUE PROBLEMS, VELOCITY, OSCILLATION, WATER WAVES, FLUID DYNAMICS, HYDRODYNAMICS, HYDROSTATICS, FLUID MECHANICS, FORCE(MECHANICS), EQUATIONS OF MOTION, LINEAR PROGRAMMING, INTEGRAL EQUATIONS, DIFFERENTIAL EQUATIONS, MATHEMATICAL MODELS, STRUCTURES.

Subject Categories : Numerical Mathematics
      Marine Engineering

Distribution Statement : APPROVED FOR PUBLIC RELEASE