
Accession Number : AD0803983
Title : AN INITIALVALUE PROBLEM FOR THE MOTION OF A SHIP MOVING WITH CONSTANT MEAN VELOCITY IN AN ARBITRARY SEAWAY
Descriptive Note : Technical rept.
Corporate Author : CALIFORNIA UNIV BERKELEY COLL OF ENGINEERING
Personal Author(s) : Lin, WenChin
PDF Url : AD0803983
Report Date : Sep 1966
Pagination or Media Count : 93
Abstract : The motion of a freely floating or submerged body, which is moving with a constant average forward speed and oscillating arbitrarily in any of the six degrees of freedom, is formulated as an initialvalue problem. The seaway is assumed to be arbitrary. The body is assumed to be 'smooth', but no symmetry of the body is required. The fundamental assumption is that both the freesurface disturbance due to forward motion of the body and the oscillations are small enough so that the problem may be linearized. By an approach similar to that of Wehausen (1965), it is shown how the present treatment of the problem leads also to Ogilvie's (1965) modified results of Cummins' (1962) decomposition of the velocity potential for the case of an oscillating body with a constant average forward speed. The linearized equations of motion of the body are then derived as a set of six integrodifferential equations. Existence and uniqueness theorems are not established either for the boundaryvalue problem or for the integral equation which is constructed.
Descriptors : *FLOATING BODIES, *SHIPS, BOUNDARY VALUE PROBLEMS, DIFFERENTIAL EQUATIONS, EQUATIONS OF MOTION, FLUID DYNAMICS, FLUID MECHANICS, FORCE(MECHANICS), HYDRODYNAMICS, HYDROSTATICS, INTEGRAL EQUATIONS, LINEAR PROGRAMMING, MATHEMATICAL MODELS, MOTION, OSCILLATION, STRUCTURES, VELOCITY, WATER WAVES
Subject Categories : Numerical Mathematics
Marine Engineering
Distribution Statement : APPROVED FOR PUBLIC RELEASE