Accession Number : AD0882890

Title :   Organic Electrolyte Permselective Membranes.

Descriptive Note : Rept. no. 4 (Final), 1 Apr 68-15 Sep 70,

Corporate Author : CALIFORNIA UNIV BERKELEY SEA WATER CONVERSION LAB

Personal Author(s) : Dampier, F. W. ; Spiegler, K. S.

Report Date : MAR 1971

Pagination or Media Count : 78

Abstract : Experiments were performed to assess the value of various commercial and specially-prepared membranes as separators in batteries containing electrolytes dissolved in propylene carbonate (PC). Specifically, these membranes should prevent self-discharge of lithium-copper halide cells. Since literature data suggest that self-discharge is caused by transport of anionic copper complexes to the lithium electrode, the separators selected were primarily cation-exchange membranes, which are known to exclude anions in aqueous solutions. Selective permeability for anions was tested by a variety of electrolyte diffusion, interdiffusion and transport number measurements. It was established that most commercial cation-exchange membranes have high resistances in PC, but three membranes with resistances less than 250 ohms sq cm in 0.50 M LiClO4/PC at 25 C were found, viz. C-322 (American Machine and Foundry Co., Stamford, Conn. - 117 ohm sq cm), UM-05 (Amicon Corp., Lexington, Mass. - 230 ohm sq cm) and 7930 Porous Glass (Corning Glass Works, Corning, N.Y. - 75 ohms sq cm). In order to combine the advantages of cation selectivity with low resistance, laminated membranes consisting of thin layers of phenolsulfonic acid-formaldehyde cation-exchange membranes on porous inert supports were prepared and tested. The data indicate that anion-barrier membranes of low resistance can be prepared by further developing this method. (Author)

Descriptors :   (*STORAGE BATTERIES, BATTERY SEPARATORS), (*MEMBRANES, TRANSPORT PROPERTIES), (*BATTERY SEPARATORS, PERMEABILITY), LITHIUM, COPPER COMPOUNDS, HALIDES, ELECTRICAL RESISTANCE, GLASS, ELECTRIC DISCHARGES, SOLUTIONS(MIXTURES), ELECTROLYTES, ION EXCHANGE RESINS.

Subject Categories : Physical Chemistry
      Electrochemical Energy Storage

Distribution Statement : APPROVED FOR PUBLIC RELEASE