
Accession Number : ADA111674
Title : Enhancing of Semigroups.
Descriptive Note : Technical rept.,
Corporate Author : STANFORD UNIV CA INST FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Personal Author(s) : Taksar,Michael I
PDF Url : ADA111674
Report Date : Jan 1981
Pagination or Media Count : 34
Abstract : Let D be a body in a threedimensional space E and suppose that this body is heated at each point x to a certain temperature h(x). Suppose that we observe the process of dissipation of heat and notice that the temperature decreases at each point x. The question is whether we can impose such boundary conditions that the original distribution of the temperature h(x) is preserved. Physical intuition suggests the following solution. We have to look at those points of the boundary where the heat dissipates into outer space and put there reflectors which redistribute the heat over D proportionally to the rate of heat loss. This report shows that a construction similar to the one suggested by physical intuition can be used in a more general situation.
Descriptors : *Body temperature, *Linear algebraic equations, *Heat loss, *Heat production(Biology), *Boundary value problems, Three dimensional, Rates, Distribution, Reflectors, Construction, Room temperature, Outer space
Subject Categories : Stress Physiology
Numerical Mathematics
Thermodynamics
Distribution Statement : APPROVED FOR PUBLIC RELEASE