
Accession Number : ADA114549
Title : Asymptotic Numerical Analysis for the NavierStokes Equations. I.
Descriptive Note : Technical summary rept.,
Corporate Author : WISCONSIN UNIVMADISON MATHEMATICS RESEARCH CENTER
Personal Author(s) : Foias,C ; Temam,R
PDF Url : ADA114549
Report Date : Jan 1982
Pagination or Media Count : 26
Abstract : Our aim in this work is to show that, in a 'permanent regime', the behaviour of a viscous incompressible fluid can be, in principle, determined by the study of a finite number of modes. It is proved that the behaviour for t yields infinity of the solution to the NavierStokes equations is completely determined by its projection on appropriate finite dimensional subspaces, corresponding to eigenspaces of the linear operator, or more general subspaces, including finite element subspaces. Some indications on the dimension of such subspaces are given.
Descriptors : *Numerical analysis, *Asymptotic series, *Navier Stokes equations, *Fluids, Incompressibility, Viscosity, Linear algebraic equations, Finite element analysis, Eigenvalues, Viscous flow
Subject Categories : Numerical Mathematics
Fluid Mechanics
Distribution Statement : APPROVED FOR PUBLIC RELEASE