Accession Number : ADA132643

Title :   A Study of Plasmaspheric Density Distributions for Diffusive Equilibrium Conditions,

Corporate Author : UTAH STATE UNIV LOGAN CENTER FOR ATMOSPHERIC AND SPACE SCIENCES

Personal Author(s) : Li,Wenxiu ; Sojka,J J ; Raitt,W J

PDF Url : ADA132643

Report Date : Mar 1983

Pagination or Media Count : 45

Abstract : We have modelled the plasmaspheric density distribution for a range of solar cycle, seasonal and diurnal conditions with a magnetic flux tube dependent diffusion equilibrium model by using experimentally determined values of ionospheric parameters at 675 km as boundary conditions. Data is presented in terms of plasmaspheric H(+) and He(+) density contours, total flux tube content and equatorial plasma density for a range of L-values from 1.15 to 3.0. The variation of equatorial plasma density for a range of L-values from 1.15 to 3.0. The variation of equatorial density with L-value shows good agreement with the 1/L to the 4th power dependence observed experimentally. The results show that the model predicts larger solar cycle and diurnal variation in equatorial plasma density than observed using whistler techniques. However, the whistler method requires a model to deduce the equatorial density and is therefore open to interpretation. Seasonal variations are rather artificial since in this general model we have not attempted to match equatorial densities for flux tubes emanating from the winter and summer hemispheres. (Author)

Descriptors :   *PLASMASPHERE, *DIFFUSION, *ION DENSITY, ELECTRON DENSITY, EQUILIBRIUM(GENERAL), SPATIAL DISTRIBUTION, PRESSURE GRADIENTS, SOLAR CYCLE, BOUNDARY VALUE PROBLEMS, SEASONAL VARIATIONS, DIURNAL VARIATIONS, TRANSPORT PROPERTIES, IONOSPHERIC MODELS, PLASMAS(PHYSICS), TEMPERATURE, PARTICLE FLUX, MATHEMATICAL PREDICTION, F REGION, EQUATORIAL REGIONS

Subject Categories : Atmospheric Physics
      Plasma Physics and Magnetohydrodynamics

Distribution Statement : APPROVED FOR PUBLIC RELEASE