
Accession Number : ADA136472
Title : An Axiomatization of the NonTransferable Utility Value.
Descriptive Note : Technical rept.,
Corporate Author : STANFORD UNIV CA INST FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
Personal Author(s) : Aumann,R J
PDF Url : ADA136472
Report Date : Sep 1983
Pagination or Media Count : 30
Abstract : The NTU (NonTransferable Utility) Value is a solution concept for multiperson cooperative games in which utility is not transferable (games without side payments). Introduced by Shapley in (1969), it generalizes his (1953) value for TU (Transferable Utility) games. Many economic contexts are more naturally modelled by NTU than by TU games; and indeed, the NTU value has been applied with some success to a variety of economic and economicpolitical models. Two wellknown applications are Nash's solutions (1950, 1953) for the bargaining problem and for twoperson cooperative games, both of which are instances of the NTU value. In this paper, the author offers an axiomatization of the NTU value. Like any axiomatization, it should enable us to understand the concept better, and hence to focus discussion. One can now view the NTU value as defined by the axioms, with the treatment in Shapley (1969) serving as a formula or method of calculation. Thus the NTU value joins the ranks of the TU value and Nash's solution to the bargaining problem, each of which is defined by axioms, but usually calculated by a formula  a formula whose intuitive significance is not, on the face of it, entirely clear.
Descriptors : *Game theory, *Value, Mathematical logic, Solutions(General), Set theory, Vector analysis, Theorems, Economic models, Political science
Subject Categories : Theoretical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE