
Accession Number : ADA136897
Title : Investigation of Effects Contributing to Dynamic Stall Using a MomentumIntegral Method.
Descriptive Note : Master's thesis,
Corporate Author : AIR FORCE INST OF TECH WRIGHTPATTERSON AFB OH SCHOOL OF ENGINEERING
Personal Author(s) : Lawrence,J S
PDF Url : ADA136897
Report Date : Dec 1983
Pagination or Media Count : 108
Abstract : Dynamic stall effects are analyzed in this investigation for cases of an inertially static airfoil in a flow field rotating at constant rate (gust response), and an airfoil pitching at constant rate in a steady flow field. The method used is a boundary layer solution of the momentumintegral equation by a modified von KarmanPohlhausen technique. Previous work using this method to match Kramer's experimental results for gust response is reviewed, corrected, and continued. The validity of the closure equation and the assumptions key to its derivation are examined, concluding that the closure equation is justified. A better match of Kramer's airfoil sections results in dynamic stall predictions very close to experimental data. The effect of varying airfoil thickness and camber is investigated. By consideration of the nonNewtonian motion of the boundary layer on the surface of a pitching airfoil, the momentumintegral method is extended to the second case. Using the MooreRottSears model for flow separation criteria, analytical results were computed and compared with experimental data. Reduction in adversity of the pressure gradient accounts for only a fraction of the total dynamic effect, and it is proposed that mass introduction into the boundary layer from the free stream may be a strongly contributing factor. This phenomena is demonstrated to have a large effect, and an argument is presented for the proper amount of mass introduction.
Descriptors : *Flow separation, *Airfoils, *Angle of attack, *Integral equations, *Angular momentum, Boundary layer flow, Gusts, Pitch(Motion), Closures, Camber, Statics, Steady flow, Unsteady flow, Pressure gradients, Nonnewtonian fluids, Theses
Subject Categories : Aircraft
Numerical Mathematics
Fluid Mechanics
Distribution Statement : APPROVED FOR PUBLIC RELEASE