Accession Number : ADA139259

Title :   The Dirichlet Problem for Harmonic Maps from the Disk into the Euclidean n-Sphere.

Descriptive Note : Technical summary rept.,

Corporate Author : WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER

Personal Author(s) : Benci,V ; Coron,J M

PDF Url : ADA139259

Report Date : Jan 1984

Pagination or Media Count : 36

Abstract : This paper studies harmonic maps when omega is the two dimensional disk and M = sub n. In this situation, given a smooth function gamma from curly d omega to sub n we prove that if gamma is not constant, there exist two harmonic functions u such that u/curly d omega = gamma.

Descriptors :   *Dirichlet integral, *Conformal mapping, *Harmonic analysis, *Mapping(Transformations), Geodesics, Topology, Two dimensional, Disks, Convergence, Functions(Mathematics), Minimax technique, Theorems

Subject Categories : Theoretical Mathematics

Distribution Statement : APPROVED FOR PUBLIC RELEASE