
Accession Number : ADA141800
Title : A Stable Explicit Scheme for the Ocean Acoustic Wave Equation.
Descriptive Note : Technical rept.,
Corporate Author : YALE UNIV NEW HAVEN CT DEPT OF COMPUTER SCIENCE
Personal Author(s) : Chan,T F ; Shen,L ; Lee,D
PDF Url : ADA141800
Report Date : Jan 1984
Pagination or Media Count : 17
Abstract : A class of ocean acoustic wave propagation problems is represented by a parabolic equation of the Schrodinger type. Using conventional explicit finite difference schemes, e.g., the Euler scheme, to solve the parabolic wave equation is unstable. Thus, important advantages of explicit schemes are completely missing. This paper presents a conditionally stable explicit scheme by introducing an extra dissipative term. This new explicit scheme is then applied to solve the ocean acoustic parabolic wave equation fully utilizing the advantages of explicit schemes. The theoretical development, the computational aspects, and the advantages are discussed. Application of the scheme to a realistic ocean acoustic problem is included. The solution obtained is compared with the unconditionally stable CrankNicolson solution.
Descriptors : *Wave equations, *Acoustic waves, *Ocean waves, *Underwater sound, Wave propagation, Finite difference theory, Computations, Boundary value problems, Schrodinger equation, Mediterranean Sea
Subject Categories : Physical and Dynamic Oceanography
Numerical Mathematics
Acoustics
Distribution Statement : APPROVED FOR PUBLIC RELEASE