
Accession Number : ADA180956
Title : Free Surface Flow Over an Obstruction in a Channel.
Descriptive Note : Technical summary rept.,
Corporate Author : WISCONSIN UNIVMADISON MATHEMATICS RESEARCH CENTER
Personal Author(s) : VandenBroeck,JeanMarc
Report Date : JAN 1987
Pagination or Media Count : 15
Abstract : Two dimensional steady potential flow over a semicircular obstacle at the bottom of a channel is considered. The problem is solved numerically by using an integrodifferential equation formulation due to Forbes and Schwartz. This equation is reduced to a set of algebraic equations by a difference method and solved by Newton's method together with parameter variation. Our numerical results for subcritical flows agree with those of Forbes and Schwartz. However we found that supercritical solutions exist only for values of the Froude number greater than some particular value. Furthermore for some values of the Froude number there are two supercritical solutions. One is a perturbation of a uniform stream whereas the other is a perturbation of a solitary wave. Keywords: inviscid incompressible fluids; submerged obstacles.
Descriptors : *UNDERWATER OBJECTS, *CHANNEL FLOW, *BARRIERS, FINITE DIFFERENCE THEORY, FLOW, SURFACES, DIFFERENTIAL EQUATIONS, INTEGRAL EQUATIONS, VARIATIONS, SOLUTIONS(GENERAL), SUPERCRITICAL FLOW, EQUATIONS, FROUDE NUMBER, FLUIDS, INCOMPRESSIBILITY, INVISCID FLOW, ALGEBRA, STREAMS, CAUCHY PROBLEM
Subject Categories : Fluid Mechanics
Distribution Statement : APPROVED FOR PUBLIC RELEASE