
Accession Number : ADA181407
Title : Numerical Methods for Stiff Ordinary and Elliptic Partial Differential Equations.
Descriptive Note : Final technical rept 1 Feb 8531 Jan 86,
Corporate Author : IBM THOMAS J WATSON RESEARCH CENTER YORKTOWN HEIGHTS NY
Personal Author(s) : Liniger,Werner ; Odeh,Farouk
Report Date : 09 JUL 1986
Pagination or Media Count : 10
Abstract : A semidirect method for the fast solution of the fast solution of Poisson's equation on general twodimensional regions is proposed. It is based on a constantcoefficient, partially consistent finite difference approximation of the Laplacian which generates a preconditioner for the conjugate gradient method. It appears to be competitive with similar methods which are among the fastest of this type.  A variety of results are given for the convergence of the wavefront relaxation merhod in large scale circuit analysis. Analytic results for the semiconductor device equations describing the onedimensional MOS capacitor are given, using asymptotic expansion techniques for singularly perturbed problems.
Descriptors : *PARTIAL DIFFERENTIAL EQUATIONS, *POISSON EQUATION, *CIRCUIT ANALYSIS, ASYMPTOTIC SERIES, APPROXIMATION(MATHEMATICS), CONSISTENCY, FINITE DIFFERENCE THEORY, SOLUTIONS(GENERAL), PERTURBATIONS, SEMICONDUCTOR DEVICES, ALGORITHMS, GRADIENTS, ELLIPSES, TWO DIMENSIONAL, NUMERICAL METHODS AND PROCEDURES, RELAXATION, WAVEFRONTS, CONVERGENCE, ONE DIMENSIONAL, PROBLEM SOLVING, CAPACITORS, INTEGRATED CIRCUITS
Subject Categories : Electrical and Electronic Equipment
Numerical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE