
Accession Number : ADA185124
Title : On a Boundary Data Operator and Generalized Exterior Robin Problems for the Helmholtz Equation.
Descriptive Note : Interim rept.,
Corporate Author : NAVAL RESEARCH LAB WASHINGTON DC
Personal Author(s) : Dallas, Allan G
PDF Url : ADA185124
Report Date : 05 Aug 1987
Pagination or Media Count : 40
Abstract : This report deals with boundaryvalue problems for the equation Delta u + kappasq u = 0 in an exterior domain Omega + in euclidean threespace, with a boundary condition of the form del u/del nu + B(u bar gamma) = g; gamma: = del omega + is smooth, nu is the unit normal for gamma, g an element of (2) L 2 (gamma), and B is bounded linear operator in L (2) (gamma) such that i zetacap is dissipative for some zeta lying in a certain set depending upon kappa. It is required that the Neumann data del u/del nu and Dirichlet data u bar gamma be taken on in the normal L (2) sense. The study is based upon the boundarydata operator A in L (2) (gamma), mapping del u/del nu to u bar gamma for appropriate outgoing solutions u in omega plus. By studying the operator I + BA, it is proven that the problem is wellposed and various construction techniques are established.
Descriptors : *ACOUSTIC SCATTERING, *BOUNDARY VALUE PROBLEMS, OPERATORS(MATHEMATICS), HILBERT SPACE
Subject Categories : Acoustics
Theoretical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE