Accession Number : ADA191905

Title :   An Optimization Method for the Reduction of Propeller Unsteady Forces.

Descriptive Note : Professional paper for Jan 88,

Corporate Author : NAVAL OCEAN SYSTEMS CENTER SAN DIEGO CA

Personal Author(s) : Mauther, Thomas S

PDF Url : ADA191905

Report Date : Feb 1988

Pagination or Media Count : 12

Abstract : Based on the work of Greenblatt (1978), an enhanced optimization technique for the reduction of propeller unsteady forces and the determination of skew distributions has been developed. The current method provides an efficient propeller design tool capable of determining a variety of cubic or quadratic skew distributions, subject to constraints, which minimize the unsteady forces produced by the various harmonic components of the input wake. The original skew optimization method was extended to include higher order harmonics, and the original force calculation method was replaced by an extended version of the method developed by Thompson (1976). Calculation of forces and skew distributions associated with a representative propeller show that acceptable reduction of unsteady forces can be obtained without having to place severe restrictions on the model constraints. The problem considered herein is the generation of propeller noise due to non-uniform inflow velocity fields. This has been still is an issue of research in the area of marine propellers, and it is felt that a recently developed method of calculating unsteady forces may also be applicable in the design and analysis of aircraft propellers. Angle-of-attack fluctuations result in unsteady blade loadings and the generation of propeller noise, and the noise sources are characterized by three types of unsteady force mechanisms: a) turbulence injection; b) vortex shedding; and c) blade-rate.

Descriptors :   *MARINE PROPELLERS, *PROPELLER NOISE, *AERIAL PROPELLERS, *NOISE REDUCTION, AIRCRAFT, COMPUTATIONS, EFFICIENCY, HARMONICS, NOISE, NONUNIFORM FLOW, QUADRATIC EQUATIONS, SKEWNESS, TURBULENCE, VELOCITY, VORTEX SHEDDING, WAKE

Subject Categories : Acoustics
      Air Condition, Heating, Lighting & Ventilating
      Aircraft

Distribution Statement : APPROVED FOR PUBLIC RELEASE