
Accession Number : ADA193479
Title : Computation of the Eigenvalues for Perturbations of Poiseuille Flow Using a TwoPoint Boundary Value Method.
Descriptive Note : Technical summary rept.,
Corporate Author : WISCONSIN UNIVMADISON CENTER FOR MATHEMATICAL SCIENCES
Personal Author(s) : Ache, Gerardo A
PDF Url : ADA193479
Report Date : Oct 1987
Pagination or Media Count : 33
Abstract : The decay rates are computed for stationary perturbations of Poiseuille flow in channels and pipes. The decay rates are found by solving eigenvalue problems of ordinary differential equations, where the eigenvalues give the rate of decay for the perturbation. A twopoint boundary value method is used to compute the eigenvalues yielding efficient and accurate calculations. For the channel flow problem, the results are in agreement with previous calculations however, the problem of determining the rate of decay for a fluid motion in a pipe has not been considered before. For the Stokes problem in a pipe the eigenvalues, governing the rate of decay, are complex. Computations are carried out for small and moderate Reynolds numbers, also high Reynolds number computations were done to show the effectiveness of this method. Keywords: Navier Stokes; Eignevalue problem; Poiseuille flow; Reynolds number; Asymptotic.
Descriptors : *EIGENVALUES, *PERTURBATIONS, *INCOMPRESSIBLE FLOW, BOUNDARY VALUE PROBLEMS, CHANNEL FLOW, COMPUTATIONS, DECAY, DIFFERENTIAL EQUATIONS, FLUIDS, HIGH RATE, MOTION, PIPES, PROBLEM SOLVING, RATES, REYNOLDS NUMBER, STATIONARY, STEADY FLOW, NAVIER STOKES EQUATIONS, VISCOUS FLOW, ASYMPTOTIC SERIES
Subject Categories : Fluid Mechanics
Operations Research
Distribution Statement : APPROVED FOR PUBLIC RELEASE