
Accession Number : ADA194569
Title : Limiting Distributions of NonLinear Vector Functions of Stationary Gaussian Processes.
Descriptive Note : Technical rept. Sep 87Aug 88,
Corporate Author : NORTH CAROLINA UNIV AT CHAPEL HILL CENTER FOR STOCHASTIC PROCESSES
Personal Author(s) : Ho, HwaiChung ; Sun, TzeChien
PDF Url : ADA194569
Report Date : Mar 1988
Pagination or Media Count : 21
Abstract : Given a stationary Gaussian vector process x sub m, ym an element of Z, and two real functions H(x) and K(x) we define Z sub H superscript N define Sum from m=1 to (n1) of Inverse A sub n Sum from m=1 to (n1) of Sub m and Sub K superscript k Inverse B Sub n Sum from m=1 to (n1) of Sub n where An and Bn are some appropriate constants. The joint limiting distribution of Sub H superscript n Sub k superscript k is investigated. It is shown that Sub H superscript n and Sub k superscript k are asymptotically independent when one of them satisfies a central limit theorem. The application of this to the limiting distribution for a certain class of nonlinear infinitecoordinated functions of a Gaussian process is also discussed. Keywords: Central limit theorem; Nincentral limit theorem; Long range dependence; Stationary Gaussian vector processes.
Descriptors : *STATISTICAL PROCESSES, *VECTOR ANALYSIS, DISTRIBUTION, LIMITATIONS, LONG RANGE(DISTANCE), LONG RANGE(TIME), NONLINEAR SYSTEMS, STATIONARY, THEOREMS
Subject Categories : Statistics and Probability
Distribution Statement : APPROVED FOR PUBLIC RELEASE