Accession Number : ADA289357

Title :   Truncated Gaussians as Tolerance Sets.

Descriptive Note : Research rept.,

Corporate Author : CARNEGIE-MELLON UNIV PITTSBURGH PA ROBOTICS INST

Personal Author(s) : Cozman, Fabio ; Krotkov, Eric

PDF Url : ADA289357

Report Date : 28 SEP 1994

Pagination or Media Count : 33

Abstract : This work focuses on the use of truncated Gaussian distributions as models for bounded data - measurements that are constrained to appear between fixed limits. We prove that the truncated Gaussian can be viewed as a maximum entropy distribution for truncated bounded data, when mean and covariance are given. We present the characteristic function for the truncated Gaussian; from this, we derive algorithms for calculation of mean, variance, summation, application of Bayes rule and filtering with truncated Gaussians. As an example of the power of our methods, we describe a derivation of the disparity constraint (used in computer vision) from our models. Our approach complements results in Statistics, but our proposal is not only to use the truncated Gaussian as a model for selected data; we propose to model measurements as fundamentally in terms of truncated Gaussians.

Descriptors :   *STATISTICAL DISTRIBUTIONS, *TRUNCATION, ALGORITHMS, MEASUREMENT, COMPUTATIONS, MODELS, LIMITATIONS, TOLERANCE, COMPUTER VISION, MEAN, ENTROPY.

Subject Categories : Statistics and Probability

Distribution Statement : APPROVED FOR PUBLIC RELEASE