
Accession Number : ADA290297
Title : Pollution Error in the hVersion of the Finite Element Method and the Local Quality of the Recovered Derivatives.
Descriptive Note : Final rept.,
Corporate Author : MARYLAND UNIV COLLEGE PARK INST FOR PHYSICAL SCIENCE AND TECHNOLOGY
Personal Author(s) : Babuska, I. ; Strouboulis, T. ; Gangaraj, S. K. ; Upadhyay, C. S.
PDF Url : ADA290297
Report Date : JAN 1995
Pagination or Media Count : 61
Abstract : We showed that the error in the finiteelement solution has two parts, namely, the localerror and the pollutionerror and we gave methods for estimating and controlling the pollutionerror in any region of interest. In this paper we will show that the control of the pollutionerror is essential in order to guarantee that the derivatives obtained from local recoveries have higher accuracy than the derivatives computed directly from the finiteelement solution and that this control must be more stringent than the one needed to guarantee the reliability of local aposteriori error estimation. We give an algorithm for controlling the local and the pollutionerror simultaneously, in any region of interest. We show that, when one is interested in obtaining high accuracy only in some parts of the domain, the proposed algorithm gives meshes which are much more economical than the ones obtained from the classical adaptive algorithms which control the global energynorm of the error. (AN)
Descriptors : *FINITE ELEMENT ANALYSIS, *ERROR ANALYSIS, MATHEMATICAL MODELS, ALGORITHMS, COMPUTATIONS, ACCURACY, PROBLEM SOLVING, MESH, RELIABILITY, SOLUTIONS(GENERAL), APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, POLYNOMIALS, LAPLACE TRANSFORMATION, DERIVATIVES(MATHEMATICS).
Subject Categories : Numerical Mathematics
Distribution Statement : APPROVED FOR PUBLIC RELEASE