Accession Number : ADA290720

Title :   An Experimental Investigation of the Time-Dependent Separation of Tangent Bodies in Supersonic Flow.

Descriptive Note : Final rept.,

Corporate Author : AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING

Personal Author(s) : Mosbarger, Neal A.

PDF Url : ADA290720

Report Date : 01 DEC 1994

Pagination or Media Count : 318

Abstract : An experimental, time-dependent separation of tangent bodies was performed in a supersonic wind tunnel (Mach 1.5 and 1.9) to investigate the significance of transient effects and the suitability of using steady-state assumptions to predict a dynamic even. The model configurations consisted of two bodies placed in a near tangent position. A stationary body, plate or ogive, was instrumented to obtain dynamic surface pressures, while a second body, a wedge attached to an air cylinder, was plunged in a constrained motion away from and towards the stationary model. Three-dimensional flow expansion around the edge of the wedge reduced the strength of the shock waves and created a region of low pressure, near freestream static, on body surfaces between the incident and reflection shock waves. The dynamic motion of the wedge did not significantly affect the shock wave development between the bodies, and steady-state corrections that accounted for the motion-induced wedge angle were appropriate for predicting the time-dependent surface pressures induced by the incident shock wave.

Descriptors :   *EXTERNAL STORE SEPARATION, *SUPERSONIC FLOW, *FREE STREAM, AERODYNAMIC CONFIGURATIONS, STEADY STATE, TRANSIENTS, TIME DEPENDENCE, EDGES, SHOCK WAVES, LOW PRESSURE, REFLECTION, CYLINDRICAL BODIES, TANGENTS, UNSTEADY FLOW, STATICS, DYNAMIC PRESSURE, SUPERSONIC WIND TUNNELS, WIND TUNNEL MODELS, CORRECTIONS, THREE DIMENSIONAL FLOW, WEDGES.

Subject Categories : Fluid Mechanics
      Aerodynamics

Distribution Statement : APPROVED FOR PUBLIC RELEASE