
Accession Number : ADA292187
Title : Quantum Optical Sources in Photonic Band Structures. SelfInduced Transparency in Photonic Band Structures: Gap Solitons Near Absorption Resonances.
Descriptive Note : Interim rept. no. 3, Dec 94Feb 95
Corporate Author : WEIZMANN INST OF SCIENCE REHOVOT (ISRAEL) DEPT OF CHEMICAL PHYSICS
Personal Author(s) : Kurizki, Gershon
PDF Url : ADA292187
Report Date : FEB 1995
Pagination or Media Count : 4
Abstract : Pulse propagation in a nonuniform resonant medium, e.g., a periodic array of resonant films, can destroy self induced transparency (SIT) (1), because the pulse area is then split between the forward and backward (reflected) coupled waves, and is no longer conserved (2). Should we then anticipate severely hampered transmission through a medium whose resonance lies in a reflective spectral domain (photonic band gap) of a periodicallylayered structure (a Bragg reflector)? We have shown analytically that it is possible for the pulse to overcome the bandgap reflection and produce SIT in a nearresonant medium embedded in a Bragg reflector. The predicted SIT propagation is a principally new type of a gap soliton, which does not obey any of the familiar soliton equations, such as the nonlinear Schridinger equation (NLSE) or the sineGordon equation. Its spatiotemporal form and intensity dependence are shown here to be distinct from the extensively  studied gap solitons in Kerrnonlinear Bragg reflectors (3), which are described by the NLSE. In treatments of bidirectional field propagation in media with arbitrary spatial distribution of nearresonant atoms (4) the Bloch equations for the population inversion and polarization are entangled in a fashion which leads to an infinite hierarchy of equations for successive spatial harmonics.
Descriptors : *QUANTUM THEORY, *PHOTONICS, COUPLING(INTERACTION), PROPAGATION, SPATIAL DISTRIBUTION, OPTICAL PROPERTIES, POLARIZATION, HARMONICS, DIELECTRICS, INTENSITY, ENERGY GAPS, REFLECTION, POPULATION, SPECTRA, LIGHT PULSES, RESONANCE, INVERSION, REFLECTORS, SOLITONS, ENERGY BANDS, BRAGG ANGLE, TRANSPARENCIES.
Subject Categories : Optics
Quantum Theory and Relativity
Distribution Statement : APPROVED FOR PUBLIC RELEASE