
Accession Number : ADA292728
Title : Wave Propagation in a FluidLoaded Homogeneous, Transversely Isotropic, Elastic Cylinder of Arbitrary Thickness.
Descriptive Note : Doctoral thesis,
Corporate Author : NAVAL UNDERSEA WARFARE CENTER NEWPORT DIV NEW LONDON CT NEW LONDON DETACHMENT
Personal Author(s) : Berliner, Marilyn J.
PDF Url : ADA292728
Report Date : 15 MAR 1995
Pagination or Media Count : 140
Abstract : The problem of wave propagation in an infinite, fluidloaded, homogeneous, transversely isotropic cylinder is studied within the framework of the linearized, threedimensional theory of elasticity. The equations of motion of the cylinder are formulated using the constitutive equations of a transversely isotropic material with a preferred material direction collinear with the longitudinal axis of the cylinder. The equations of motion of the internal and external fluids are formulated using the constitutive equations of an inviscid fluid. Displacement potentials are used to solve the equations of motion of the cylinder and the fluids. The frequency equation of the coupled system, consisting of the cylinder and the internal and external fluids, is developed under the assumption of perfectslip boundary conditions at the fluidsolid interfaces. This frequency equation is general in axial wavenumber k, circumferential wavenumber n, cylinder wall thickness h, and radial frequency. Cutoff frequencies and frequency spectra are computed for the n=1 modes in hollow cylinders, hypothetical fluid columns, fluidfilled cylinders, and cylinders that are fluid filled and immersed in fluid. Numerical results are obtained for two isotropic cylinders (composed of steel and soft (linear) and for a highly anisotropic, fiberreinforced cylinder. (AN)
Descriptors : *ELASTIC PROPERTIES, *WAVE PROPAGATION, STRESS STRAIN RELATIONS, LINEAR SYSTEMS, THICKNESS, EQUATIONS OF MOTION, ACOUSTIC WAVES, COMPARISON, NUMERICAL ANALYSIS, THESES, COMPUTATIONAL FLUID DYNAMICS, THREE DIMENSIONAL, COMPRESSIBLE FLOW, CYLINDRICAL BODIES, ANISOTROPY, INVISCID FLOW, ACOUSTIC VELOCITY, SOUND PRESSURE, GAS SURFACE INTERACTIONS, FIBER REINFORCEMENT, PHASE VELOCITY.
Subject Categories : Acoustics
Mechanics
Fluid Mechanics
Distribution Statement : APPROVED FOR PUBLIC RELEASE