
Accession Number : ADA292777
Title : Improved Modeling of Unsteady Heat Transfer (The First Step).
Descriptive Note : Final rept. 1 Jun31 Jul 94,
Corporate Author : CHRISTIAN BROTHERS COLL MEMPHIS TN
Personal Author(s) : Driver, Mark A.
PDF Url : ADA292777
Report Date : 28 FEB 1995
Pagination or Media Count : 69
Abstract : Application of Total Variation Diminishing (TVD) schemes to turbulent flows is considered. The mathematical and physical basis of TVD schemes is discussed. TVD methodology is extended to the solution of turbulent flow problems. A firstorder time accurate, secondorder space accurate algorithm is used to compute solutions to the problems of shockboundarylayer interaction, turbine rotor cascade flow, and unsteady, shockinduced heat transfer using the TVD algorithm. This algorithm provides the capability to accurately predict separation, reattachment and pressure and skin friction profiles for shockboundarylayer inter action. Improved accuracy is demonstrated in computing surface pressures for a turbine rotor cascade. Heat transfer for the cascade is predicted with fair accuracy, showing all the significant features of the experimental Stanton number profile. Fairly accurate comparison with theory and experiment is evident in the unsteady solutions. (AN)
Descriptors : *HEAT TRANSFER, *TURBULENT FLOW, *COMPUTATIONAL FLUID DYNAMICS, MATHEMATICAL MODELS, ALGORITHMS, EXPERIMENTAL DATA, COMPARISON, SHOCK WAVES, ACCURACY, FINITE DIFFERENCE THEORY, PROFILES, MATHEMATICAL PREDICTION, APPROXIMATION(MATHEMATICS), UNSTEADY FLOW, NUMERICAL METHODS AND PROCEDURES, BOUNDARY LAYER TRANSITION, HEAT FLUX, INVISCID FLOW, VISCOUS FLOW, PRESSURE DISTRIBUTION, GAS SURFACE INTERACTIONS, SKIN FRICTION, CASCADES(FLUID DYNAMICS).
Subject Categories : Fluid Mechanics
Thermodynamics
Distribution Statement : APPROVED FOR PUBLIC RELEASE