Accession Number : ADA293945

Title :   Exponentially Accurate Approximations to Piece-Wise Smooth Periodic Functions.

Descriptive Note : Contract rept.,

Corporate Author : INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING HAMPTON VA

Personal Author(s) : Geer, James ; Banerjee, Nana S.

PDF Url : ADA293945

Report Date : MAR 1995

Pagination or Media Count : 41

Abstract : A family of simple, periodic basis functions with built-in discontinuities are introduced, and their properties are analyzed and discussed. Some of their potential usefulness is illustrated in conjunction with the Fourier series representation of functions with discontinuities. In particular, it is demonstrated how they can be used to construct a sequence of approximations which converges exponentially in the maximum norm to a piece-wise smooth function. The theory is illustrated with several examples and the results are discussed in the context of other sequences of functions which can be used to approximate discontinuous functions. (AN)

Descriptors :   *APPROXIMATION(MATHEMATICS), *PERIODIC FUNCTIONS, *FOURIER SERIES, OPTIMIZATION, TAYLORS SERIES, COMPARISON, ACCURACY, SELF CONTAINED, POLYNOMIALS, CONVERGENCE, EXPONENTIAL FUNCTIONS, DISCONTINUITIES, SEQUENCES(MATHEMATICS).

Subject Categories : Numerical Mathematics

Distribution Statement : APPROVED FOR PUBLIC RELEASE