
Accession Number : ADA297193
Title : Representation of Feedback Operators for Hyperbolic Systems.
Descriptive Note : Contractor rept.,
Corporate Author : INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING HAMPTON VA
Personal Author(s) : Burns, John A. ; King, Belinda B.
PDF Url : ADA297193
Report Date : MAY 1995
Pagination or Media Count : 14
Abstract : We consider the problem of obtaining integral representation of feedback operators for damped hyperbolic control systems. We show that for the wave equation with ICelvinVoigt damping and noncompact input operator, the feedback gain operator is HilbertSchmidt. This result is then used to provide an explicit integral representation for the feedback operator in terms of functional gains. Numerical results are given to illustrate the role that damping plays in the smoothness of these gains. (AN)
Descriptors : *MATHEMATICAL MODELS, *WAVE EQUATIONS, VIBRATION, CONTROL SYSTEMS, OPTIMIZATION, COMPUTATIONS, NUMERICAL ANALYSIS, DAMPING, NONLINEAR SYSTEMS, FEEDBACK, CONVERGENCE, OPERATORS(MATHEMATICS), APPLIED MATHEMATICS, HYPERBOLIC DIFFERENTIAL EQUATIONS, RICCATI EQUATION, HYBIRD SYSTEMS.
Subject Categories : Numerical Mathematics
Operations Research
Distribution Statement : APPROVED FOR PUBLIC RELEASE