
Accession Number : ADA316818
Title : Formulation and Validation of Vertically TwoDimensional ShallowWater Wave Model.
Descriptive Note : Technical rept.,
Corporate Author : DELAWARE UNIV NEWARK CENTER FOR APPLIED COASTAL RESEARCH
Personal Author(s) : Johnson, Bradley D. ; Kobayashi, Nobuhisa ; Cox, Daniel T.
PDF Url : ADA316818
Report Date : JUL 1996
Pagination or Media Count : 137
Abstract : The computer program VBREAK is developed to predict the timedependent, twodimensional velocity field under normally incident breaking waves on beaches and coastal structures. To reduce computation time considerably, use is made of the depthintegrated continuity and horizontal momentum equations. The momentum equation includes the momentum flux correction due to the vertical variation of the horizontal velocity. The bottom shear stress is expressed in terms of the nearbottom horizontal velocity immediately outside the thin wave boundary layer. The third equation for the momentum flux correction is derived from the depthintegrated wave energy equation. In order to express these three onedimensional, timedependent equations in terms of the three unknown variables of the water depth, depthaveraged horizontal velocity, and nearbottom horizontal velocity, the normalized vertical profile of the horizontal velocity is assumed to be cubic on the analogy between turbulent bores and hydraulic jumps. Furthermore, the turbulent shear stress is assumed to be expressed using the turbulent eddy viscosity whose mixing length is proportional to the water depth.
Descriptors : *WATER WAVES, *SURF, TIME DEPENDENCE, FLUX(RATE), BOUNDARY LAYER, TURBULENT FLOW, EDDIES(FLUID MECHANICS), SHALLOW WATER, SHEAR STRESSES, MIXING, VISCOSITY, BEACHES, OCEAN BOTTOM, MOMENTUM TRANSFER.
Subject Categories : Fluid Mechanics
Physical and Dynamic Oceanography
Distribution Statement : APPROVED FOR PUBLIC RELEASE