Accession Number : ADA317715

Title :   Stress Concentration, Stress Intensity, and Fatigue Lifetime Calculations for Shrink-Fit Compound Tubes Containing Axial Perforations within the Wall.

Descriptive Note : Final rept.,

Corporate Author : ARMY ARMAMENT RESEARCH DEVELOPMENT AND ENGINEERING CENTER WATERVLIET NY BENET LABS

Personal Author(s) : Endersby, Stephen N. ; Parker, Anthony P. ; Bond, Timothy J. ; Underwood, John H.

PDF Url : ADA317715

Report Date : AUG 1996

Pagination or Media Count : 19

Abstract : Elastic-plastic numerical stress analyses and fatigue lifetime predictions are presented for shrink-fit compound tubes containing multiple, axial holes at the interface between inner and outer tube. The holes, which are semicircular, are introduced initially as periodic notches on the outer surface of the inner tube and an outer plain tube is heated, slid over the inner tube, and allowed to cool to achieve the shrink-fit. Residual stresses resulting from interference and operational stress ranges arising from cyclic bere pressurization are calculated and fatigue lifetimes are predicted. Two potentially critical locations for fatigue failure are identified as the bere and the notch root. The predicted lifetimes are compared with earlier work on a similar overall geometry subjected to autofrettage. The critical location is shown to be at the bere and a clear improvement in overall fatigue lifetime is demonstrated for the shrink-fit tube compared with the autofrettaged tube. As the interface radius is reduced, there is a general reduction in the ratio of fatigue stress range at the bere to that at the hole and the possibility of the critical location moving to the notch root. A normalized presentation for design purposes is proposed.

Descriptors :   *FATIGUE LIFE, *CRACK PROPAGATION, *STRESS CONCENTRATION, STRESS ANALYSIS, FINITE ELEMENT ANALYSIS, FRACTURE(MECHANICS), CYLINDRICAL BODIES, HOLES(OPENINGS), RESIDUAL STRESS, FAILURE(MECHANICS), THERMAL STRESSES, AXIAL LOADS, CYCLIC LOADS, ELASTOPLASTICITY, PERFORATION, AUTOFRETTAGE, INNER TUBES.

Subject Categories : Mechanics

Distribution Statement : APPROVED FOR PUBLIC RELEASE