Accession Number : ADA318526

Title :   Proximity Drawings of Outerplanar Graphs (Preliminary Version).

Descriptive Note : Technical rept.,

Corporate Author : BROWN UNIV PROVIDENCE RI DEPT OF COMPUTER SCIENCE

Personal Author(s) : Lenhart, William ; Liotta, Giuseppe

PDF Url : ADA318526

Report Date : JUN 1996

Pagination or Media Count : 15

Abstract : A proximity drawing of a graph is one in which pairs of adjacent vertices are drawn relatively close together according to some proximity measure while pairs of non-adjacent vertices are drawn relatively far apart. The fundamental question concerning proximity drawability is: Given a graph G and a definition of proximity, is it possible to construct a proximity drawing of G? We consider this question for outerplanar graphs with respect to an infinite family of proximity drawings called beta-drawings. These drawings include as special cases the well-known Gabriel drawings (when beta = 1), and relative neighborhood drawings (when beta = 2). We first show that all biconnected outerplanar graphs are beta-drawable for all values of beta such that 1 <= beta <= 2. As a side effect, this result settles in the affirmative a conjecture by Lubiw and Sleumer, that any biconnected outerplanar graph admits a Gabriel drawing. We then show that there exist biconnected outerplanar graphs that do not admit any convex beta-drawing for beta between 1 and 2. We also provide upper bounds on the maximum number of biconnected components sharing the same cut-vertex in a beta-drawable connected outerplanar graph. This last result is generalized to arbitrary connected planar graphs and is the first non-trivial characterization of connected beta-drawable graphs. Finally, a weaker definition of proximity drawings is applied and we show that all connected outerplanar graphs are drawable under this definition.

Descriptors :   *GRAPHS, COMPUTER GRAPHICS, APPLIED MATHEMATICS, ENGINEERING DRAWINGS, PROJECTIVE GEOMETRY, LINES(GEOMETRY), PLANE GEOMETRY.

Subject Categories : Numerical Mathematics

Distribution Statement : APPROVED FOR PUBLIC RELEASE