
Accession Number : ADA323806
Title : SubtreeElimination Algorithms in Deductive Databases.
Descriptive Note : Doctoral thesis,
Corporate Author : STANFORD UNIV CA DEPT OF COMPUTER SCIENCE
Personal Author(s) : Saraiya, Yatin
PDF Url : ADA323806
Report Date : JAN 1991
Pagination or Media Count : 160
Abstract : A deductive database consists of a set of stored facts, and a set of logical rules (typically, recursive Horn clauses) that are used to manipulate these facts. A number of optimizations in such databases involve the transformation of sets of logical rules (programs) to simpler, more efficiently evaluable programs. We consider a class of optimizations in which the transformation is a simple syntactic restriction on the form of the original program, and in which the correctness of the transformation indicates the existence of a normal form for the proof trees generated by the program. For example, the existence of basislinearizability in a nonlinear program indicates that the program is inherently linear, and permits the use of specialpurpose query evaluators for linear recursions. The canonical example of a basislinearizable program is the program that computes the transitive closure of a binary relation; the corresponding normal form for the proof trees is that of rightlinearity. Similarly, if a program is sequencable, then it is conducive to a pipelined evaluation. In addition, the existence of kboundedness in a program permits the elimination of recursion overhead in evaluating the program. We investigate the complexity of detecting such optimization opportunities, and provide correct (but not always complete) algorithms for this purpose. Each of the problems that are mentioned above may be described in terms of the subtreeelimination problem, which we define and analyze. We relate the detection of basislinearizability, sequencability and 1boundedness to the complexity classes NC, P and NP, and show that the first two of these problems are, in general, undecidable. The techniques used in our analysis provide a complete description of the complexity of deciding the equivalence of conjunctive queries (singlerule, non recursive programs).
Descriptors : *DATA BASES, *ALGORITHMS, SOFTWARE ENGINEERING, OPTIMIZATION, DATA MANAGEMENT, COMPUTER LOGIC, SEMANTICS, THESES, RECURSIVE FUNCTIONS, SYSTEMS ANALYSIS, COMPUTER PROGRAM VERIFICATION, MAPPING(TRANSFORMATIONS), SYNTAX, NONLINEAR PROGRAMMING, CONTROL SEQUENCES, STRUCTURED PROGRAMMING, CONTEXT FREE GRAMMARS.
Subject Categories : Computer Programming and Software
Distribution Statement : APPROVED FOR PUBLIC RELEASE